Epigenetic Effects of Prenatal Stress on 11b- Hydroxysteroid Dehydrogenase-2 in the Placenta and Fetal Brain
نویسندگان
چکیده
Maternal exposure to stress during pregnancy is associated with significant alterations in offspring neurodevelopment and elevated maternal glucocorticoids likely play a central role in mediating these effects. Placental 11b-hydroxysteroid dehydrogenase type 2 (HSD11B2) buffers the impact of maternal glucocorticoid exposure by converting cortisol/ corticosterone into inactive metabolites. However, previous studies indicate that maternal adversity during the prenatal period can lead to a down-regulation of this enzyme. In the current study, we examined the impact of prenatal stress (chronic restraint stress during gestational days 14–20) in Long Evans rats on HSD11B2 mRNA in the placenta and fetal brain (E20) and assessed the role of epigenetic mechanisms in these stress-induced effects. In the placenta, prenatal stress was associated with a significant decrease in HSD11B2mRNA, increased mRNA levels of the DNA methyltransferase DNMT3a, and increased DNA methylation at specific CpG sites within the HSD11B2 gene promoter. Within the fetal hypothalamus, though we find no stress-induced effects on HSD11B2 mRNA levels, prenatal stress induced decreased CpG methylation within the HSD11B2 promoter and increased methylation at sites within exon 1. Within the fetal cortex, HSD11B2 mRNA and DNA methylation levels were not altered by prenatal stress, though we did find stress-induced elevations in DNMT1 mRNA in this brain region. Within individuals, we identified CpG sites within the HSD11B2 gene promoter and exon 1 at which DNA methylation levels were highly correlated between the placenta and fetal cortex. Overall, our findings implicate DNA methylation as a mechanism by which prenatal stress alters HSD11B2 gene expression. These findings highlight the tissue specificity of epigenetic effects, but also raise the intriguing possibility of using the epigenetic status of placenta to predict corresponding changes in the brain. Citation: Jensen Peña C, Monk C, Champagne FA (2012) Epigenetic Effects of Prenatal Stress on 11b-Hydroxysteroid Dehydrogenase-2 in the Placenta and Fetal Brain. PLoS ONE 7(6): e39791. doi:10.1371/journal.pone.0039791 Editor: Kang Sun, Fudan University, China Received February 9, 2012; Accepted May 31, 2012; Published June 26, 2012 Copyright: 2012 Jensen Peña et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This research was supported by Grants DP2OD001674 from the Office of the Director, National Institutes of Health and 1R01MH092580-01A1 from the National Institutes of Mental Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected]
منابع مشابه
Epigenetic Effects of Prenatal Stress on 11β-Hydroxysteroid Dehydrogenase-2 in the Placenta and Fetal Brain
Maternal exposure to stress during pregnancy is associated with significant alterations in offspring neurodevelopment and elevated maternal glucocorticoids likely play a central role in mediating these effects. Placental 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) buffers the impact of maternal glucocorticoid exposure by converting cortisol/corticosterone into inactive metabolites. Howeve...
متن کاملPrenatal Stress, Glucocorticoids and the Programming of Adult Disease
Numerous clinical studies associate an adverse prenatal environment with the development of cardio-metabolic disorders and neuroendocrine dysfunction, as well as an increased risk of psychiatric diseases in later life. Experimentally, prenatal exposure to stress or excess glucocorticoids in a variety of animal models can malprogram offspring physiology, resulting in a reduction in birth weight ...
متن کاملThe impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملMaternal stress alters endocrine function of the feto-placental unit in rats.
Prenatal stress (PS) can cause early and long-term developmental effects resulting in part from altered maternal and/or fetal glucocorticoid exposure. The aim of the present study was to assess the impact of chronic restraint stress during late gestation on feto-placental unit physiology and function in embryonic (E) day 21 male rat fetuses. Chronic stress decreased body weight gain and food in...
متن کاملDistress During Pregnancy: Epigenetic Regulation of Placenta Glucocorticoid-Related Genes and Fetal Neurobehavior.
OBJECTIVE Increased risk of psychopathology is observed in children exposed to maternal prenatal distress, and elevated maternal cortisol and epigenetic regulation of placental glucocorticoid-pathway genes are potential mechanisms. The authors examined maternal distress and salivary cortisol in relation to fetal movement and heart rate ("coupling") and DNA methylation of three glucocorticoid pa...
متن کامل